Может кому-нибудь будет интересно, у кого есть море или кто-то планирует в скором времени его
Подробные рекомендации: Критические ПараметрыКальцийМногие кораллы используют кальций для формирования скелета, состоящего в основном из карбоната кальция. Большую часть кальция, необходимого для этого процесса, кораллы получают из окружающей их воды. В связи с этим запасы кальция часто истощаются в аквариумах, населенных быстрорастущими кораллами, красными известковыми водорослями, тридакнами и водорослями Halimeda. Если уровень кальция опускается ниже 360 ppm, кораллам становится существенно труднее получать необходимое его количество, что намного замедляет их рост.
Поддержание соответствующего уровня кальция является одним из наиболее важных аспектов ухода за рифовым аквариумом. Большинство рифовых аквариумистов стремятся поддерживать его в своих аквариумах на уровне, близком к природному (~420 ppm). Из этого не следует, что увеличение концентрации кальция выше природного уровня улучшает кальцификацию (т.е. рост скелета) у большинства кораллов. Эксперименты со Stylophora pistillata, например, показывают, что низкий уровень кальция ограничивает кальцификацию, в то время как концентрации выше, чем примерно 360 ppm не приводят к ее росту.3 Почему это происходит, было подробно рассмотрено в предыдущей статье о молекулярных механизмах кальцификации у кораллов.
По этим причинам я рекомендую поддерживать концентрацию кальция в пределах от примерно 380 до 450 ppm. Также я рекомендую использовать для повседневного ухода сбалансированные добавки кальция и щелочности. Наиболее популярными методами являются применение известковой воды (кальк), кальциевых реакторов и двухкомпонентных добавок.
Однако, если запасы кальция сильно истощены, применять сбалансированные добавки неправильно, поскольку это приведет к чрезмерному росту щелочности. В таких случаях хорошим способом повышения уровня кальция является добавление хлорида кальция.
ЩелочностьДля построения своего преимущественно карбонатного скелета многие кораллы наряду с кальцием используют "щелочность". Широко распространено мнение о том, что кораллы потребляют бикарбонат, преобразуют его в карбонат и затем используют этот карбонат для формирования скелета. Процесс преобразования выглядит следующим образом:
HCO3- а CO3-- + H+
Бикарбонат а Карбонат + Кислота
Чтобы обеспечить кораллам требуемое количество бикарбоната, аквариумистам достаточно непосредственно измерить его содержание. Однако разработать тест на бикарбонаты сложнее, чем тест на щелочность. Поэтому использование щелочности как "суррогатного" показателя наличия бикарбоната глубоко укоренилось в рифововодстве.
Итак, что же такое щелочность? Щелочность в морском аквариуме - это просто показатель количества кислоты (H+), требуемой для снижения рН до 4,5, когда весь бикарбонат преобразуется в угольную кислоту в соответствии со следующим уравнением:
HCO3- + H+ а H2CO3
И в натуральной, и в аквариумной морской воде бикарбонат в сильной степени преобладает над всеми другими ионами, вносящими вклад в щелочность, поэтому зная количество H+, требуемого для снижения рН до 4,5, можно определить концентрацию бикарбоната в воде. В связи с этим аквариумисты нашли удобным использовать щелочность в качестве косвенного показателя этой концентрации.
Важным предостережением при использовании этого косвенного показателя является тот факт, что некоторые соли, такие как Seachem, имеют повышенную концентрацию бора. Поскольку природная концентрация бора низка, и этот элемент влияет на стабильность рН, слишком большое его количество нарушает нормальное соотношение между бикарбонатом и щелочностью и это должно учитываться при определении правильного уровня щелочности в случае использования этих солей.
В отличие от кальция, широко распространено мнение о том, что у некоторых организмов кальцификация протекает быстрее при повышенном по сравнению с естественным уровне щелочности. Этот результат нашел свое отражение в научной литературе, когда было показано, что добавление в морскую воду бикарбоната увеличивает скорость кальцификации у Porites porites.4 В этом случае удвоение концентрации бикарбоната приводило к удвоению скорости кальцификации. Потребление бикарбоната несомненно может стать фактором, ограничивающим эту скорость у многих кораллов.5 Частично это может быть связано с тем фактом, что и фотосинтез и кальцификация требуют бикарбоната, а его концентрация может оказаться недостаточно высокой (например, в сравнении с концентрацией кальция).
По этим причинам поддержание уровня щелочности является критическим аспектом ухода за рифовым морским аквариумом. В отсутствие добавок уровень щелочности будет быстро падать по мере использования кораллами имеющегося в воде запаса. Большинство рифовых аквариумистов стараются поддерживать щелочность на уровне, равном или немного превышающем естественный, хотя точные цифры частично зависят от поставленных конечных целей. Например, те, кто стремится к получению наиболее высоких темпов роста кораллов, часто повышают щелочность до предела. Я рекомендую поддерживать щелочность в пределах от 2,5 до 4 мэк/Л (7-11 dKH, 125-200 ppm CaCO3 эквивалент), хотя более высокие уровни также приемлемы, если это не приводит к снижению уровня кальция.
Уровень щелочности выше естественного увеличивает абиотическое (небиологическое) осаждение карбоната кальция на обогревателях и крыльчатке помп. Это осаждение не только бесполезно расходует кальций и щелочность, столь тщательно добавляемые аквариумистами, но и повышает требования к уходу за оборудованием. Если осаждение вызвано повышенной щелочностью, это может снизить уровень кальция. Таким образом, повышенная щелочность может привести к нежелательным последствиям.
Для повседневного ухода я рекомендую использовать сбалансированные добавки кальция и щелочности. Наиболее популярными методами являются применение известковой воды (кальк), кальциевых реакторов и двухкомпонентных добавок.
Для быстрой корректировки щелочности хороший эффект дает использование пищевой или стиральной соды.
СоленостьСуществует много разнообразных методов измерения и описания солености, включающих в себя измерители удельной проводимости, рефрактометры и гидрометры. Обычно они показывают удельный вес, т.е. specific gravity (безразмерная величина) или соленость ( в тысячных долях - ppt - примерно соответствующих количеству граммов сухой соли в 1 кг воды), хотя иногда используется и удельная проводимость (единица измерения - мСим/см, миллисименс на сантиметр).
Несколько необычно, что аквариумисты не всегда используют единицы измерения, являющиеся естественными для избранного метода (удельный вес для гидрометров, показатель преломления для рефрактометров и удельная проводимость для измерителей проводимости), а попеременно их подменяют.
Для справки, естественная океанская вода имеет соленость около 35 ppt, что соответствует удельному весу примерно 1,0264 и удельной проводимости в 53 мСим/см.
Насколько мне известно, существует мало реальных подтверждений, что рифовый аквариум предпочтительней содержать при отличающемся от естественного уровне солености. Однако содержание морских рыб и в некоторых случаях рифовых аквариумов при несколько пониженной солености выглядит обычным делом. Эта практика, по крайней мере частично, имеет в своей основе тезис о том, что при пониженой солености рыбы испытывают меньший стресс. Кроме того, большим недопониманием среди морских аквариумистов является соотношение между удельным весом и соленостью, особенно с учетом температурных эффектов.
Рональд Шимек обсудил вопросы солености на естественных рифах в предыдущей статье. Его, как и моей, рекомендацией является поддержание солености на естественном уровне. Если обитатели аквариума происходят из солоноватоводной среды с пониженной соленостью или из Красного моря, где соленость повышена, отклонение солености в аквариуме от стандартной безусловно будет иметь смысл. Во всех же остальных случаях я советую поддерживать соленость на уровне 35 ppt (удельный вес = 1,0264; удельная проводимость = 53 мСим/см).
ТемператураСуществует много различных механизмов воздействия температуры на обитателей рифового аквариума. Первым и основным является рост метаболизма при повышении температуры. В результате при повышенной температуре животные потребляют больше кислорода, углекислого газа, питательных веществ, кальция и щелочности. Более высокий метаболизм может также вести как к ускоренным темпам роста, так и увеличению количества продуктов жизнедеятельности существ.
Другим важным фактором является влияние температуры на химические аспекты аквариума. Например, растворимость газов, таких как кислород и углекислый газ, меняется при изменении температуры. В частности, кислород может стать предметом беспокойства, поскольку его растворимость с ростом температуры ухудшается.
Что же это означает для аквариумистов?В большинстве случаев попытки воссоздать природную среду в рифовом аквариуме являются оправданными. Однако в условиях маленькой замкнутой системы температура может оказаться параметром, требующим повышенного внимания. Использование океана в качестве модели для выбора температуры в аквариуме может привести к осложнениям, поскольку кораллы растут в столь широком температурном диапазоне. Как бы то ни было, Рональд Шимек показал в своей предыдущей статье, что наибольшее разнообразие кораллов сосредоточено в водах со средней температурой порядка 83-86° F.
Однако для рифового аквариума характерны ограничения, которые могут сделать оптимальную температуру несколько более низкой. При нормальных условиях в морском аквариуме уровень содержания кислорода и метаболизм его жителей зачастую не являются важными факторами. Однако в случае нештатной ситуации, например, при отключении сетевого напряжения, растворенный в воде кислород может быстро оказаться полностью потребленным. Более низкие же температуры не только приводят к более высокому уровню насыщенности воды кислородом ДО возникновения нештатной ситуации, но и снизят его потребление посредством замедления метаболизма у обитателей аквариума. В случае гибели организмов рост содержания аммония при пониженной температуре также будет более медленным. По этим причинам может возникнуть желание найти практический компромисс между слишком высокой (даже если в природе кораллы при этом процветают) и слишкой низкой температурой. Хотя средние температуры на рифах в зонах максимального разнообразия (т.е. так называемом коралловом треугольнике с Индонезией в центре), эти зоны подвержены частым значительным изменениям. Фактически, более прохладные рифы (т.е. открытые рифы в Тихом океане) зачастую стабильнее при более низких температурах за счет океанского прибоя, но менее терпимы к потере цвета и другим связанным с температурой возмущениям.
С учетом всего сказанного, естественные критерии приводят к довольно широкому диапазону приемлемых температур. В своем аквариуме я поддерживаю температуру около 80-81° F круглый год. В действительности я больше склоняюсь к более низкой температуре летом, когда потеря электричества приведет к ее повышению, и к более высокой зимой, когда отсутствие напряжения приведет к охлаждению.
Т.о. мои рекомендации сводятся к поддержанию температуры в диапазоне 76-83° F за исключением тех случаев, когда имеется веская причина для выбора других значений.
рНАквариумисты тратят довольно много времени и сил, пытаясь решить насущные проблемы рН, имеющиеся в их аквариумах. Некоторые из их усилий, безусловно, оправданы, поскольку реальные проблемы с рН могут привести к плохому самочувствию животных. Во многих же случаях, однако, проблема заключается в самом измерении или интерпретации результатов.
По нескольким причинам контроль за уровнем рН в морском аквариуме является очень важным. Одной из них является тот факт, что гидробионты процветают только в определенном диапазоне рН. Этот диапазон для каждого вида индивидуален. Именно поэтому трудно обосновать утверждения об "оптимальности" уровня рН в аквариуме, населенном большим количеством разных видов. Даже уровень рН в натуральной морской воде (от 8,0 до 8,3) может быть субоптимальным для некоторых существ. Однако более чем 80 лет назад было признано, что уровни рН, сильно отличающиеся от естественного (например, снижение до 7,3), вызывают стресс у рыб.6 В настоящее время существует дополнительная информация об оптимальных уровнях рН для многих организмов, но этих данных удручающе недостаточно, чтобы дать аквариумистам возможность оптимизировать рН для большинства видов, представляющих для них интерес. 7-11
Кроме того, влияние рН на гидробионтов может быть как прямым, так и косвенным. Известно, что токсичность металлов, таких как медь и никель, по отношению к некоторым аквариумным видам, таким, как мизиды и амфиподы,12 изменяется при изменении рН. Это приводит к тому, что приемлемый диапазон уровня рН в одном аквариуме может отличаться от такового в другом, даже если они населены одними и теми же видами, но имеют разную концентрацию металлов в воде.
Изменения уровня рН существенно влияют на некоторые фундаментальные процессы, происходящие во многих морских организмах. Одним из таких процессов является кальцификация, или построение из карбоната кальция скелетов, которая, как известно, зависит от рН, замедляясь, если рН падает.13,14 Используя эти данные и обобщенный опыт большого количества любителей, можно выработать некоторые рекомендации о приемлемых и неприемлемых уровнях рН в рифовом аквариуме.
Диапазон приемлемых уровней рН в рифовом аквариуме является скорее мнением, нежели четко сформулированным фактом, и зависит от личности говорящего. Этот диапазон может довольно сильно отличаться от "оптимального". Определить же оптимальность гораздо сложнее, чем просто приемлемость, поэтому мы сосредоточимся именно на приемлемости. В конечном счете уместным является значение, соответствующее естественному, т.е. порядка 8,2, однако успешное содержание кораллового рифового аквариума возможно в более широком диапазоне значений. Мое мнение, что с несколькими предостережениями диапазон рН от 7,8 до 8,5 является приемлемым для рифового аквариума. К этим предостережениям относятся:
1. Уровень щелочности должен быть как минимум 2,5 мэк/Л, а для уровня рН в низшей части диапазона желательно и выше. Частично я обосновываю это утверждение тем фактом, что многие рифовые аквариумы довольно хорошо развиваются в диапазоне рН от 7,8 до 8,0, и что большинство наиболее успешных аквариумных систем этого типа имеют в своем составе кальциевые реакторы с применением углекислого газа, которые при своей тенденции снижать рН поддерживают щелочность на высоком уровне (не менее 3 мэк/Л). В этом случае все проблемы, связанные с кальцификацией при пониженном уровне рН, могут быть скомпенсированы повышенным уровнем щелочности.
2. Уровень кальция должен быть не ниже 400 ppm. При понижении уровней рН и кальция кальцификация затрудняется. Одновременное достижение нижних пределов рН, щелочности и кальция является нежелательным, поэтому, если уровень рН понижен и повышение его простыми методами невозможно (что может произойти при использовании кальциевого реактора с CaCO3/CO2), как минимум, убедитесь, что уровень кальция в аквариуме нормальный или повышенный (~400-450 ppm).
3. Аналогично, одной из проблем при повышенном уровне рН (выше, чем 8,2 и чем выше, тем более явно выраженной) является абиотическое (небиологическое) осаждение карбоната кальция, приводящее к снижению уровней кальция и щелочности и осадкам на обогревателях и крыльчатке помп. Если вы задираете рН до 8,4 и выше (как зачастую происходит при применении известковой воды), то убедитесь, что уровни кальция и щелочности находятся в приемлемом диапазоне (т.е. не слишком низкие, чтобы замедлять кальцификацию, и не слишком высокие, чтобы вызвать осаждение кальция на оборудовании).
4. Скачкообразное повышение уровня рН менее вредно, чем скачкообразное же его понижение.
Фосфаты
"Простейшей" формой фосфора в рифовых аквариумах является неорганический ортофосфат (H3PO4, H2PO4-, HPO4-- и PO4--- все являются формами ортофосфата. Ортофосфат - это та форма фосфора, которую измеряют большинство тестов. Эта форма также присутствует в естественной морской воде, хотя в ней имеются и другие. Концентрация фосфора в морской воде сильно меняется от одного места к другому, а также от глубины и времени суток. В поверхностных водах фосфора намного меньше, чем на глубине, что обусловлено биологической активностью организмов, поглощающих его из воды. Типичная концентрация фосфатов в приповерхностной океанской воде очень низка по аквариумным меркам и зачастую не превышает 0,005 ppm.
Без принятия специальных мер в рифовом аквариуме фосфаты накапливаются, и их уровень растет. Основным источником фосфатов является корм, однако они также попадают в аквариум со свежей водой и в некоторых случаях с кальциево-щелочными добавками.
Рост концентрации фосфатов выше природного уровня может привести к нежелательным эффектам. Одним из них является подавление кальцификации. Фосфаты могут понизить скорость построения скелетов кораллами и кораллиновыми водорослями, тем самым замедляя и даже останавливая их рост.
Фосфат также является важнейшим питательным веществом, влияющим на рост водорослей. Если фосфаты в аквариуме накапливаются, рост водорослей может стать большей проблемой. При концентрациях ниже 0,03 ppm фосфат становится фактором, ограничивающим скорость роста многих видов фитопланктона (предполагая, что другие вещества, такие как азот и железо, присутствуют в достаточном количестве и рост не ограничивают). Выше этого уровня скорость роста многих океанских организмов не зависит от концентрации фосфатов (хотя в рифовом аквариуме эти взаимосвязи более сложные из-за присутствия железа и/или азота в количествах, превышающих их естественные уровни). Поэтому для контроля роста водорослей уровень фосфатов надо поддерживать довольно низким.
По этим причинам следует поддерживать концентрацию фосфатов на уровне, не превыщающем 0,03 ppm. Остается открытым вопрос, будет ли дополнительная польза от поддержания этого уровня ниже 0,01 ppm, хотя именно к этому стремятся многие аквариумисты. Наилучшим способом поддержания низкого уровня фосфатов является комбинация нескольких методов экспорта, таких как выращивание и прополка макроводорослей или других быстрорастущих организмов, использование кормов, не содержащих фосфаты в избытке, скимминг, добавки известковой воды, а также использование поглотителей фосфатов, особенно на основе железа (таковые всегда будут черного или коричневого цвета). Некоторые аквариумисты также пытаются контролировать фосфаты с помощью вспышек микроорганизмов, например некоторых бактерий. Однако этот последний метод, по моему мнению, следует применять только опытным аквариумистам.
АммиакАммиак (NH3) выделяется всеми животными, а также некоторыми другими аквариумными обитателями. К сожалению, он весьма токсичен для всех животных, хотя и безвреден для определенных организмов, таких, как некоторые виды макроводорослей, которые его охотно потребляют. Однако рыбы не являются единственными животными, страдающими от аммиака, и даже некоторые водоросли, такие как фитопланктон Nephroselmis pyriformis, чувствительны к концентрациям менее, чем 0,1 ppm.15
В созревшем рифовом аквариуме выделяемый аммиак обычно очень быстро поглощается. Макроводоросли используют его для построения белков, ДНК и других азотсодержащих биохимических веществ. Бактерии также поглощают и преобразуют его в нитриты, нитраты и азот (знаменитый "азотный цикл"). Все эти соединения гораздо менее токсичны, чем аммиак (по крайней мере для рыб). Т.о., отходы, содержащие аммиак, быстро "обезвреживаются" в нормальных условиях.
Однако при определенных условиях аммиак может стать причиной для беспокойства. На протяжении периода начального созревания рифового аквариума или при добавлении новых живых камней или песка в аквариуме может образоваться избыток аммиака, который имеющиеся механизмы фильтрации не смогут переработать достаточно быстро. Рыбы при этом подвергаются большой опасности. Даже уровень в 0,2 ppm может быть опасным для рыб.16 В таких случаях рыб и беспозвоночных следует перевести в более чистую воду или поместить в аквариум поглотитель аммиака, например Amquel.
Многих аквариумистов смущает разница между аммиаком и его менее токсичной формой - аммонием. Эти формы быстро (много раз в секунду) переходят одна в другую, поэтому во многих случаях различий между ними не делают. Они связаны следующей кислотно-основной реакцией:
NH3 + H+ Яа NH4+
Аммиак + ион водорода (кислота) Яа ион аммония
Единственной причиной, по которой аммоний считают менее токсичным, является то, что он, будучи заряженной молекулой, проходит через жабры рыб и попадает в кровь медленнее, чем аммиак, легко проникающий сквозь жаберные мембраны.
Аквариумы с повышенными уровнями рН содержат меньше H+, и большая часть аммиака будет в виде NH3. Поэтому токсичность раствора с постоянной концентрацией аммиака растет с ростом рН. Это важно учитывать при транспортировке рыб, когда уровень аммиака может достигнуть критической отметки.