сайт Союза русского народа? тогда да - это заговор против всего русского народа! или есть посерьезней статьи?
нетрудно предугадать, что в конце концов
mchy сделает виновными евреев.

не туда обратились. Если вас интересует еврейский вопрос ... то, как известно, лучшие обличители евреев - сами евреи. Посмотрите, к примеру, видео Эдуарда Ходоса. Почитайте его книги.
http://hodos-video.com/arhiv/01/http://review3d.ru/eduard-xodos-evrejskij-udar-evrejskaya-ruletkaили масонов

Добавлено: 25 Февраль 2012, 10:05:25
это проказни их тайного общества

очень может быть ... почитайте здесь и сопоставьте с происходящим
http://ruskline.ru/analitika/2011/10/11/novyj_mirovoj_poryadok/http://ruskline.ru/analitika/2011/10/11/novyj_mirovoj_poryadok/http://ruskline.ru/analitika/2011/11/17/novyj_mirovoj_poryadok/http://ruskline.ru/analitika/2011/11/24/novyj_mirovoj_poryadok/сайт
Союза русского народа?

тогда да - это заговор против всего русского народа!

или есть посерьезней статьи?

Добавлено: 25 Февраль 2012, 09:32:23
mchy, без обид, но на самом деле какая-то статья не внушающая доверия.
Какая разница чей сайт - там даны конкретные номера патентов, они инвариантны относоительно публикующих их сайтов.
Я бы вам посоветовал, в первую очередь, купить толковый словарь и научиться им вдумчиво пользоваться. А то до вас туго доходит.
"вы бы
сначала почитали этот топик ... прежде чем вопросы задавать"
...
А вот "научные работы" "геоинженеров"
http://ukpmc.ac.uk/abstract/MED/20823254т.е. распыления аллюминий-бариевых смесей - это не плод больного воображения, а "научные" разработки конкретных людей из конкретных университетов. По началу чудаки хотели распылять серу
http:\\gmi.gsfc.nasa.gov\mtgs_rpts\2010_09\weisenstein_geoengineering.pdf
http://ukpmc.ac.uk/abstract/MED/20823254Photophoretic levitation of engineered
aerosols for geoengineering
David W. Keith
Energy and Environmental Systems Group, University of Calgary, 2500 University Drive NW, Calgary AB, Canada T2N 1N4
Communicated by James G. Anderson, Harvard University, Cambridge, MA, June 30, 2010 (received for review June 15, 2009)
Aerosols could be injected into the upper atmosphere to engineer
the climate by scattering incident sunlight so as to produce a cooling
tendency that may mitigate the risks posed by the accumulation
of greenhouse gases. Analysis of climate engineering has focused
on sulfate aerosols. Here I examine the possibility that engineered
nanoparticles could exploit photophoretic forces, enabling more
control over particle distribution and lifetime than is possible with
sulfates, perhaps allowing climate engineering to be accomplished
with fewer side effects. The use of electrostatic or magnetic materials
enables a class of photophoretic forces not found in nature.
Photophoretic levitation could loft particles above the stratosphere,
reducing their capacity to interfere with ozone chemistry;
and, by increasing particle lifetimes, it would reduce the need for
continual replenishment of the aerosol. Moreover, particles might
be engineered to drift poleward enabling albedo modification to
be tailored to counter polar warming while minimizing the impact
on equatorial climates.
...
The Cost of Engineered Particles. Is it possible to fabricate such
particles at sufficiently low cost? Any definitive answer would,
of course, require a sustained broad-based research effort. The
following argument serves only to suggest that one cannot discount
the possibility: Approximately 109 kg of engineered particles
similar to the example described above would need to be
deployed to offset the radiative effect of CO2 doubling. Assuming
a lifetime of 10 years, the particles must be supplied at a rate of
108 kg∕yr. A plausible upper bound on the acceptable cost of
manufacture can be gained by noting that the monetized cost
of climate impacts and similarly the cost of substantial reductions
in greenhouse gas (GHG) emissions are both of order 1% of
global gross domestic product (GDP) (28). Suppose one demanded
that the annualized cost of particle manufacture be less
than 1% of the cost of abating emissions, that is 10−4 of the
∼60 × 1012 global GDP. Under these assumptions, the allowable
manufacturing cost is 60∕kg. Many nanoscale particles are currently
manufactured at costs significantly less than this threshold.
Silica-alumina ceramic hollow microspheres with diameters of
1 μm (e.g., 3M Zeeospheres) can be purchased in bulk at costs
less than 0.3∕kg. Moreover, bulk vapor-phase deposition methods
exist to produce monolayer coatings on fine particles, and there
are rapid advances in self-assembly of nanostructures that might
be applicable to bulk production of engineered aerosols.
These scaling calculations certainly do not prove that nanoscale
particles for climate engineering could be successfully manufactured
and deployed. They do suggest that the possibility of
doing this over the coming decades cannot be dismissed.
Any climate engineering scheme will only partially and imperfectly
compensate for the climatic impacts of GHGs, and it will
likely impose significant risks of its own. Given common estimates
of the monetized cost of climate damages, the value of reducing
climate change by geoengineering could exceed 1% of GDP. It is,
therefore, plausible that the costs of geoengineering will be all
but irrelevant to decisions about deployment, which will focus
on the risk-to-risk trade-off between the risk of geoengineering
and the risk of climate damages; assuming, of course, that the
direct costs of geoengineering are limited to a small fraction,
say 0.1%, of GDP. Thus it might be that the cost of engineered
particles could approach 1;000∕kg before the costs of manufacture
played a significant role in deployment decisions.
...
1. Keith DW (2000) Geoengineering the climate: History and prospect. Annu Rev Energ
Env 25:245–284.
2. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: A contribution
to resolve a policy dilemma? Climatic Change 77:211–219.
3. Canadell JG, et al. (2007) Contributions to accelerating atmospheric CO2 growth
from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad
Sci USA 104:18866–18870.
4. Heckendorn P, et al. (2009) The impact of geoengineering aerosols on stratospheric
temperature and ozone. Environ Res Lett 4:045108.
5. Wigley TML (2006) A combined mitigation/geoengineering approach to climate
stabilization. Science 314:452–454.
6. Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate
using stratospheric sulfate aerosols: The role of particle size. Geophys Res Lett
35:L02809.
7. Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the
hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:L15702.
8. Tilmes S, Müller R, Salawitch R (2008) The sensitivity of polar ozone depletion to
proposed geoengineering schemes. Science 320:1201–1204.
9. Teller E, Wood L, Hyde R (1997) Global Warming and Ice Ages: I. Prospects for Physics
Based Modulation of Global Change (Lawrence Livermore Natl Laboratory, Livermore,
CA) p 20.
10. Angel R (2006) Feasibility of cooling the Earth with a cloud of small spacecraft near the
inner Lagrange point (L1). Proc Natl Acad Sci USA 103:17184–17189.
11. Ehrenhaft F (1918) Die photophorese. Ann Phys Berlin 361:81–132.
12. Orr C, Jr, Keng EYH (1964) Photophoretic effects in the stratosphere. J Atmos Sci
21:475–478.
13. Rohatschek H (1996) Levitation of stratospheric and mesospheric aerosols by gravitophotophoresis.
J Aerosol Sci 27:467–475.
14. Pueschel RF, et al. (2000) Vertical transport of anthropogenic soot aerosol into the
middle atmosphere. J Geophys Res Atmos 105:3727–3736.
15. Cheremisin AA, Vassilyev YV, Horvath H (2005) Gravito-photophoresis and aerosol
stratification in the atmosphere. J Aerosol Sci 36:1277–1299.
16. Wurm G, Krauss O (2008) Experiments on negative photophoresis and application to
the atmosphere. Atmos Environ 42:2682–2690.
17. Soden BJ, Wetherald RT, Stenchikov GL, Robock A (1992) Global cooling after the
eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science
296:727–730.
18. Olmo FJ, Tovar J, Alados-Arboledas L, Okulov O, Ohvril HO (1999) A comparison of
ground level solar radiative effects of recent volcanic eruptions. Atmos Environ
33:4589–4596.
19. Gu L, et al. (2003) Response of a deciduous forest to the Mount Pinatubo eruption:
Enhanced photosynthesis. Science 299:2035–2038.
20. Murphy DM (2009) Effect of stratospheric aerosols on direct sunlight and implications
for concentrating solar power. Environ Sci Technol 43:2784–2786.
21. Kirk-Davidoff DB, Hintsa EJ, Anderson JG, Keith DW (1999) The effect of climate
change on ozone depletion through changes in stratospheric water vapour. Nature
402:399–401.
22. Blackstock JJ, et al. (2009) Climate Engineering Responses to Climate Emergencies
(Novim, Santa Barbara, CA).
23. Ho CY (1989) Thermal Accommodation and Adsorption Coefficients of Gases (Hemisphere
Publishing Corp, Washington, DC).
24. Fong DD, et al. (2004) Ferroelectricity in ultrathin perovskite films. Science
304:1650–1653.
25. Jones DBA, Andrews AE, Schneider HR, McElroy MB (2001) Constraints on meridional
transport in the stratosphere imposed by the mean age of air in the lower stratosphere.
J Geophys Res Atmos 106:10243–10256.
26. MacCracken MC (2009) On the possible use of geoengineering to moderate specific
climate change impacts. Environ Res Lett 4:045107.
27. Bambera JL, Alleyb RB, Joughinc I (2007) Rapid response of modern day ice sheets to
external forcing. Earth Planet Sci Lett 257:1–13.
28. Metz B, Davidson O, Swart R, Pan J, eds. (2001) Climate Change 2001: Mitigation:
Contribution of Working Group III to the Third Assessment Report of the IPCC
(Cambridge Univ Press, Cambridge, UK).
29. Keith DW, Parson E, Morgan MG (2010) Research on global sun block needed now.
Nature 463:426–427.
30. Anonymous (1976) U.S. Standard Atmosphere (U.S. Government Printing Office,
Washington, DC).
Keith PNAS ∣ September 21, 2010 ∣ vol. 107 ∣ no. 38 ∣ 16431
APPLIED PHYSICAL
SCIENCES